Recommender system using collaborative filtering approach uses the past users' behavior to predict what items the current user would like. We create a UxM matrix where U is the number of users and M is the number of different items or products. Uij is the rating expressed by the user-i for product-j. In the real world, not every user expresses an opinion about every product. For example, let us say there are five users including Bob has expressed their opinion about four movies as shown below Table 1: movie1 movie2 movie3 movie4 user1 1 3 3 5 user2 2 4 5 user3 3 2 2 user4 1 3 4 Bob 3 2 5 ? Our goal is to predict what movies to recommend to Bob, or put it another way should we recommend movie4 to Bob, knowing the rating for four movies from other users including Bob. Traditionally, we could do item to item comparison, which means if the user has liked item1 in the past then that user may like other items similar to item1. Another way to recommend...